CHAPTER 14

FLUIDS

OVERVIEW:

The physics of fluids is the basic of hydraulic engineering. That has a vast of
applications such as a medical engineering might study the blood flow in arteries
of an aging patient, an environment engineer might be concerned about the
drainage from waste sites or the efficient irrigation of farmlands, a naval engineer
might be concerned with the dangers faced by a deep sea diver, etc.

WHAT IS A FLUID?

There are four primary states of matter: liquid, gas, solid, and plasma

Plasma examples:

aurorae.
the excited low-pressure gas inside neon signs and fluorescent lights.
solar wind.

welding arcs.

the Earth's ionosphere.

stars (including the Sun)

the tail of a comet.

lightning

The fifth state (man-made Bose-FEinstein condensate) .

A fluid, in contrast to a solid, is a substance that can flow: liquids and gases

A fluid can flow, assume the shape of a container, if placed in a sealed container,
will distribute applied pressure evenly surface in the container. A liquid is nearly
incompressible unlike gas.

Density and Pressure:

For solids, we are interested more in mass and forces. With fluids, we are more
interested in density and pressure.



To find the density p of a fluid at nay points, we isolate a small volume element
AV around that point and measure the mass Am of the fluid contained within that
element. The density is then:

_Am
P="a

In practice, we assume that a fluid sample is large relative to atomic dimensions
and thus is smooth, uniform density, rather than lumpy with atoms. This
assumption allows us to write:
_m
pP=v
Density is a scalar property. Its unit is the kilogram per cubic meter. [kg/m’]

Density of water = 998 kg/m’ ~ 1000 kg/m’

Note that the density of a gas varies considerably with pressure, but the density of
a liquid does not.

Pressure: We define the pressure on the piston from the fluid as

__AF
b=

Pressure of uniform force on flat area is

p = g [Pa = N/m’|

Pressure is a scalar, having no directional properties (F is only the magnitude of the
force)

Unit of pressure is Pascal [Pa] in SI: 1 atm ~ 1.01¥10° Pa

The atmosphere (atm) is the approximate average pressure of the atmosphere at sea
level. Other units of pressure:

(1 atm =760 mmHg (Torr); 1 atm ~ 1.01 bar; latm ~ 15 psi)

Pressure on mercury to make it raise 760 mm = 0.76 m is:



13,560*9.81*0.76 = 101098 Pa ~ 1 atm.
On the top of Mount Everest 1/3 atm; at the bottom of ocean 1000 atm.

Part 1: FLUID AT REST (fluid statics)

A tank of water opens to the atmosphere. Divers know that the pressure increases
with depth below the air. Mountaineers know that the pressure decreases with
attitude as one ascends into the atmosphere. The pressures encountered by these
divers or mountaineers are usually called hydrostatic pressures due to fluids that
are static (at rest).

This downward force is

Three forces act on
this sample of water.

due to the water pressure
pushing on the top surface.

v

y=0

h _l__l___i Level 1,

ti- This upward force is due to
the water pressure pushing
on the bottom surface.

Gravity pulls downward
on the sample.

Wl

The three forces
L= balance.

I lr | Sample
Vo= mg

The balance of these three forces 1s written as

But Fi=p;.A and F,=p,.A

Where the volume V is the product of its face area A and its height y; —y,

F2=F1+mg

so p.A=p;.A+pVg

Thus p2=pi +pg(y1 — y2)



This equation can be used to find pressure both in a liquid (as a function of depth)
and in the atmosphere (as a function of height). If we seek the pressure p at a depth
h below the liquid surface, we can choose level 1 to be the surface, level 2 to be a
distance h below it, and p, to represent the atmospheric pressure on the surface,
then we can write: P = Po T+ Pria gh

For the atmospheric (uniform over the distance): p = p,— pai.gd
if not uniform P ~p,exp(—0.00012h) [Pa]

Example: Estimate air pressure on the top of Mount Everest (h =8848 m)

Note that the pressure at a given depth in the liquid depends on that depth but not
on any horizontal dimension of the fluid or its container.

That equation holds no matter what the shape of the container.
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p” 1s said to be the total pressure, or absolute pressure at level 2 because the

pressure p at level 2 consists of two contributions p, due to the atmosphere, which
bears down on the liquid, and pgh - the pressure due to the liquid above level 2,
which bears down on level 2. In general, the difference between an absolute
pressure and an atmospheric pressure is called the gauge pressure.

The Gauge pressure is P =P — Po = Pruia gh

Measuring Pressure:




A very basic mercury barometer is a device to measure the pressure of the
atmosphere. If we choose level 1 to be that of the air-mercury interface and level 2
to be that of the top of the mercury column, the we have:

Do =Py gh

Where py, 1s the density of the mercury. For a given pressure, the height h of the
mercury column does not depend on the cross-sectional area of the vertical tube.
All that counts is the vertical distance h between the mercury levels.

(a) A mer-
cury barometer. (b)
Another mercury barome-
ter. The distance h is the
same in both cases.

Level 2
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Example: A tank contains oil and water as below figure. Calculate pressure at level
L and at the bottom of the tank if density of water is 998 kg/m"3 and density of oil
1s 798 kg/m”3; h;=1.50 m and h,=2.50 m.

h1=1.5m

h2=2.5m

(pr=113 kPa and p,=137 kPa)



Example: A scuba diver practicing in a swimming pool takes enough air from his
tank to fully expand his lungs before abandoning the tank at depth L and
swimming to the surface. He ignores instructions and fails to exhale during his
ascent. When he reaches the surface, the difference between the external pressure
on him and the air pressure in his lungs is 9.3 kPa. From what depth does he start?
What potentially lethal danger does he face?

Solution: The pressure at depth h in a liquid of density p is given by p = p, + pgh

At depth h the external pressure on him and thus the air pressure within his lungs is
P=po+ pgh we can find

h=0Pe—_ 30" ___ _g95m
pg  (998.%)(9.8 m/m?)

This 1s not deep, but the pressure difference 1s 9.3 kPa. This is sufficient to rupture
the diver’s lungs and force air from them into the depressurized blood, which then
carries the air to the heart.

Example: A U-tube contains two liquids in static equilibrium. Water of density py,
=998 kg/m3 is in the right arm, and oil of unknown density p,; 1s in the left.
Measurement gives | = 135 mm and d=12.3 mm. What is the density of the oil?

] T T
il ) i
This much ail

balances... Water~_| | ; ... this much
[ water.

Solution:

Because the water is in static equilibrium, pressure at interface position must be the
same for right arm and left arm:

P = Po T ngl =Po T poilg(l+d) therefore



Poil __

Pw l+d

... a large output
force.

A small input
forca produces ...

Output |

or poy = (998) —=— = 915 kg/m3

135+12.3

Demonstrating Pascal’s Principle

Consider the case in which the incompressible fluid is a liquid contained in a tall
cylinder, as in Fig. 11 7. The cylinder is fitted with a piston on which a container of
lcad shot rests. The atmosphere, container, and shot exert pressure p, on the pis-
ton and thus on the liquid. The pressure g at any point P in the liquid is then

(14-11)
Let us add a little more lzad shot to the container to increase p.,, by an amount

Ap.y. The quantities p, g, and /i in Eq. 14-11 are unchanged. so the pressure
changeat Pis

P = Pex + pgi.

Ap — Apeyy. (14-12)

This pressure change is independent of ki, so it must hold for all points within the
liquid, as Pascal’s principle states.

Pascal’s Principle and the Hydraulic Lever

Figure 14-8 shows how Pascal’s principle can be made the basis of a hydraulic
lever. In uperalion, lel an external [orce of wagnitude F; be direded downward
on the lefi-hand [or input) piston, whose surface area is A, An incompressible

Input | 5.
5

liquid in the device then produces an upward torce of magnitude £, on the right-
hand (or output) piston, whose surfacz area is A,. To keep the system in equilib-
rium, there must be a downward force of magnitude F, on the output piston from
an external load (not shown). The force E applied on the left and the downward
force F, from the load on tha right produce a change Ap in the pressure of the li-
uid that is given by

F _F,
Ap=—= .
Fig. 14.8 A hydraulic arrangement that A, A,
can be used to magnify a foree F.'The work A
done is, however, not magnified and is the 30 I,=F " {14-13)
same for both the inputand output forces A;

The work W done on the input piston by the applied force is equal to the work W
done by the output piston in lifting the load placed on it.

W=F0d0 =F,‘d,'

The advantage of a hydraulic lever is: With a hydraulic lever, a given force applied
over a given distance can be transformed to a greater force applied over a smaller
distance.

Mechanical advantage of a simple machine is

Buovant force:

The buoyancy force is caused by the pressure exerted by the fluid in which an
object is immersed.



The buoyancy force always points upwards because the pressure of a fluid
increases with depth.

We can calculate the buoyancy force directly by computing the force exerted on
each of the object’s surfaces, or indirectly by finding the weight of the displaced
fluid.

FB = Fbottom - Ftop

If the buoyant force is greater than the object’s weight, the object rises to the
surface and floats. If the buoyant force is less than the object’s weight, the object
sinks. If the buoyant force equals the object’s weight, the object can remain
suspended at its present depth. The buoyant force is always present, whether the
object floats, sinks, or is suspended in a fluid.

Apparent weight: If we place a stone on a scale that is calibrated to measure
weight, the reading on the scale is the stone’s weight. However, if we do this
underwater, the upward buoyant force on the stone from the water decreases the
reading. That reading is then an apparent weight:

Apparent weight = Actual weight — magnitude of buoyant force

A
A

Partially submerged floating




ARCHIMEDES’ PRINCIPLE:

When a body is fully or partially submerged in a fluid, a buoyant force ﬁb from the
surrounding fluid acts on the body. The force is directed upward and has a
magnitude equal to the weight myg of the fluid that has been displaced by the
body. Fy,=m;g

where mis the mass of the fluid that is displaced by the body.

Pobj _ h

Pri H

Fraction of submerged =

H is the high of the object and h is the depth of submerged part.

Example: An iceberg (p=917 kg/m"3) floats in seawater (p=1025 kg/m"3). What
fraction of the iceberg is beneath the surface of the water?

Floating:

When a body floats in a fluid, the magnitude F), of the buoyant force on the body is
equal to the magnitude F, of the gravitational force on the body. :

Fb=Fg

Example: A block of density p=800 kg/m’ floats face down in a fluid of density p;
= 1200 kg/m’. The block has height H=6.0 cm.

a. By what depth h is the block submerged?
b. If the block is held fully submerged and then released, what is the magnitude
of its acceleration?



Block of height H floats in a fluid, to a depth of A.

Solution:
The block is stationary, thus:  F, =F,
where  F, =msg = psVrg = psfLWhg and F, =pLWHg

=§ so h=LH=2"60=40cm

Solve for h:
Pr 1200

P
Pf

With the block fully submerged, the volume of the displaced water is V=LWH
(full block)

This means that the value of buoyant force is larger, and the block no longer be
stationary but will accelerate upward. Newton’s second law now:

Fy—Fs=ma or psLWHg— pLWHg = pLWHa
: — (Pr _ — (1200 _ — 2
Solve for a: a= (p ) g (800 1) (9.8) = 4.9 m/s

Part 2: FLOW OF IDEAL FLUIDS: (fluid dynamics)

An 1deal fluid is incompressible and lacks viscosity, and its flow is steady and
irrotational.

A streamline is the path followed by an individual fluid particle. A tube of flow is a
bundle of streamlines. The flow within any tube of flow obeys the

Equation of Continuity: R, = Av = a constant

In which R, is the volume flow rate, A is the cross-sectional area of the tube of
flow at any point, and v is the speed of the fluid at that point.

Mass flow rate is R, = pR, = pAv = a constant




Example:

The figure shows how the stream of water emerging from a faucet “neck down” as
it falls. This change in the horizontal cross-sectional area is characteristic of any
laminar (non turbulent) falling stream because the gravitational force increases the
speed of the stream. The indicated cross-sectional areas are A; = 1.2 cm” and A =
0.35 cm’.

The two levels are separated by a vertical distance h=45 mm. What is the volume
flow rate from the tap?

e N
i & The volume flow per
second here must
BN match ...

=
=
=

T T Ao

fi

—l— -4 ... the volume flow
per second here.

Flg. 14-18 As water falls from a tap. its speed
increases. Because the volume flow rate must be
the same at all horizontal cross sections of the
stream, the stream must “neck down” (narrow).

Solution:

Solve the system of two equations: ~ A,v, = Av and v? = v2+ 2gh

= 28.6cm/s

2 2
We have v, = \/ﬂ _ \/2(9-8)(0.045)(0,35 )

AZ2-p42 (1.22-0.352)

The volume flow rateis R, = A,v, = (1.2)(28.6) = 34 cm3/s

BERNOULLT’S EQUATION:

Applying the principle of conservation of mechanical energy to the flow of an ideal
fluid leads to Bernoulli’s equation



p+ %pvz + pgy = a constant (1)

Proof:

Flnid Acvws at a steady rate

through a length I of a tube, from the input
end at the left to the output end at the right.
From time fin (@) to time ¢ + Af in (b), the
amount of fluid shown in purple enters the
input end and the equal amount shown in
green emerges from the output end.
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= t+ At

(b)

The above figure represents a tube through which an ideal fluid is flowing at a
steady rate. In a time interval t, suppose that a volume of fluid V, colored purple
enters the tube at the left end and an identical volume colored green emerges at the
right end. The emerging volume must be the same because the fluid is
incompressible.

Let y;, v, and p; be the elevation, speed, and pressure of the fluid entering at the
left, and y,, v,, and p, be the corresponding quantities for the fluid emerging at the
right. The fluid lying between the two vertical planes separated by a distance L
does not change its properties during this process. We need be concerned only with
changes that take place at the input and output ends.

Apply the energy conservation in the form of the work-kinetic energy theorem:



W=4K

This tells us that the change in the kinetic energy of the system must equal the net
work done on the system. The change in kinetic energy results from the change in
speed between the ends of the tube and is

AK = Amv? —~Amv} = - pAV (v? — v?)

Am is the mass of the fluid that enters at the left end and leaves at the right end
during a small time interval 4¢.

The work done on the system arises from two sources:
W=W,+W,=AK

a. The work W, done by the gravitational force (Amg) on the fluid of mass 4m
during the vertical lift of the mass from input level to the output level is:

Wy = —Amg(y; — y1) = —pgA(y2 — ¥y1)
The work is negative because the upward displacement and the downward
gravitational force have opposite directions.

b. The work done on the system at the input end to push the entering fluid into
the tube and by the system at the output end to push forward the fluid that is
located ahead of the emerging fluid. In general, the work done by a force of
magnitude F, acting on a fluid sample contained in a tube of area AA to
move the fluid through a distance Ax is:

FAx = (pA)(Ax) = p(AAx) = pAV
The work done on the system is then p; 4V and the work done by the system is
—p, AV. Their sum W, is W, = —p,AV + p; AV = —(p2 — p1)AV
The work-kinetic energy theorem now becomes:

W, + W, = AK

1
Or  —pgAV(y, —y1) — AV(p, — p1) = 5 pAV (V3 — v1)



This leads to the Bernoulli’s equation (1).

Example: In the old West, a desperado fires a bullet into an open water tank,
creating a hole a distance h below the water surface. What is the speed v of the
water exiting the tank?

f
Fig. 14-20 Water pours )( ';
through a hole in a water \
tank. at a distance h below -.
the water surface. The

pressure at the water
surface and at the hole is
atmospheric pressure py.

Solution:

Solve the system of two equations: R, = av = Av,

1 1
and po +5pv; + pgh = po +5pv* +pg(0)
Since a << A, so Vv,<<v so the middle term on the left can be negligible
relative to the middle term to the right. Finally, we have: v =,/2gh
(similar to the free-fall)
Example:

The fresh water behind a reservoir dam has depth D = 15 m. A horizontal pipe 4.0
cm in diameter passes through the dam at depth d=6.0 m. A plug secures the pipe
opening. Find the magnitude of the frictional force between plug and pipe wall?

If the plug is removed, what water volume exits the pipe in 3.0 hours?



Solution:

The friction force must at least equal to the force applied on the plus, therefore
f=AAp = pygdA = (1000)(9.8)(6)J1(0.02)* = 74 N.

The speed of water flowing out of the holeis v = \/ZgTd

The volume of water flowing out of the pipeint=3.0 his

V=R,t=(Av)t=1.5%10"m’



