
CHAPTER 14 

FLUIDS 

OVERVIEW: 

The physics of fluids is the basic of hydraulic engineering. That has a vast of 

applications such as a medical engineering might study the blood flow in arteries 

of an aging patient, an environment engineer might be concerned about the 

drainage from waste sites or the efficient irrigation of farmlands, a naval engineer 

might be concerned with the dangers faced by a deep sea diver, etc. 

WHAT IS A FLUID? 

There are four primary states of matter: liquid, gas, solid, and plasma 

Plasma examples: 

 aurorae. 

 the excited low-pressure gas inside neon signs and fluorescent lights. 

 solar wind. 

 welding arcs. 

 the Earth's ionosphere. 

 stars (including the Sun) 

 the tail of a comet. 

 lightning 

 

The fifth state (man-made Bose-Einstein condensate) . 

 

A fluid, in contrast to a solid, is a substance that can flow: liquids and gases 

A fluid can flow, assume the shape of a container, if placed in a sealed container, 

will distribute applied pressure evenly surface in the container. A liquid is nearly 

incompressible unlike gas. 

Density and Pressure:  

For solids, we are interested more in mass and forces. With fluids, we are more 

interested in density and pressure. 



To find the density ρ of a fluid at nay points, we isolate a small volume element 

ΔV around that point and measure the mass Δm of the fluid contained within that 

element. The density is then: 

      
  

  
 

In practice, we assume that a fluid sample is large relative to atomic dimensions 

and thus is smooth, uniform density, rather than lumpy with atoms. This 

assumption allows us to write: 

      
 

 
 

Density is a scalar property. Its unit is the kilogram per cubic meter. [kg/m
3
] 

Density of water = 998 kg/m
3
 ~ 1000 kg/m

3 

Note that the density of a gas varies considerably with pressure, but the density of 

a liquid does not.  

Pressure: We define the pressure on the piston from the fluid as 

       
  

  
 

Pressure of uniform force on flat area is     

  
 

 
     [Pa = N/m

2
] 

 

  

Pressure is a scalar, having no directional properties (F is only the magnitude of the 

force) 

Unit of pressure is Pascal [Pa] in SI:     1 atm ~ 1.01*10
5
 Pa  

The atmosphere (atm) is the approximate average pressure of the atmosphere at sea 

level. Other units of pressure: 

(1 atm = 760 mmHg (Torr); 1 atm ~ 1.01 bar; 1atm ~ 15 psi) 

Pressure on mercury to make it raise 760 mm = 0.76 m is: 



13,560*9.81*0.76 = 101098 Pa ~ 1 atm. 

On the top of Mount Everest 1/3 atm; at the bottom of ocean 1000 atm. 

Part 1: FLUID AT REST (fluid statics) 

A tank of water opens to the atmosphere. Divers know that the pressure increases 

with depth below the air. Mountaineers know that the pressure decreases with 

attitude as one ascends into the atmosphere. The pressures encountered by these 

divers or mountaineers are usually called hydrostatic pressures due to fluids that 

are static (at rest). 

 

The balance of these three forces is written as 

      F2 = F1 + mg 

But             F1 = p1.A  and F2 = p2.A                so    p2.A = p1.A + ρVg 

Where the volume V is the product of its face area A and its height y1 – y2  

Thus             p2 = p1 + ρg(y1 – y2) 



This equation can be used to find pressure both in a liquid (as a function of depth) 

and in the atmosphere (as a function of height). If we seek the pressure p at a depth 

h below the liquid surface, we can choose level 1 to be the surface, level 2 to be a 

distance h below it, and po to represent the atmospheric pressure on the surface, 

then we can write:                       p = po + ρfluid gh     

For the atmospheric (uniform over the distance): p = po – ρairgd      

if not uniform                                             [Pa] 

Example: Estimate air pressure on the top of Mount Everest (h =8848 m) 

 

    

Note that the pressure at a given depth in the liquid depends on that depth but not 

on any horizontal dimension of the fluid or its container. 

That equation holds no matter what the shape of the container. 

“p” is said to be the total pressure, or absolute pressure at level 2 because the 

pressure p at level 2 consists of two contributions po due to the atmosphere, which 

bears down on the liquid, and ρgh - the pressure due to the liquid above level 2, 

which bears down on level 2. In general, the difference between an absolute 

pressure and an atmospheric pressure is called the gauge pressure. 

The Gauge pressure is             pg = p – po = ρfluid gh 

Measuring Pressure: 



A very basic mercury barometer is a device to measure the pressure of the 

atmosphere. If we choose level 1 to be that of the air-mercury interface and level 2 

to be that of the top of the mercury column, the we have: 

     po = ρHg gh 

Where ρHg is the density of the mercury. For a given pressure, the height h of the 

mercury column does not depend on the cross-sectional area of the vertical tube. 

All that counts is the vertical distance h between the mercury levels. 

                                      

 

Example: A tank contains oil and water as below figure. Calculate pressure at level 

L and at the bottom of the tank if density of water is 998 kg/m^3 and density of oil 

is 798 kg/m^3; h1=1.50 m and h2=2.50 m.  

(pL=113 kPa and pb=137 kPa)  



Example: A scuba diver practicing in a swimming pool takes enough air from his 

tank to fully expand his lungs before abandoning the tank at depth L and 

swimming to the surface. He ignores instructions and fails to exhale during his 

ascent. When he reaches the surface, the difference between the external pressure 

on him and the air pressure in his lungs is 9.3 kPa. From what depth does he start? 

What potentially lethal danger does he face? 

Solution: The pressure at depth h in a liquid of density ρ is given by   p = po + ρgh 

At depth h the external pressure on him and thus the air pressure within his lungs is       

p = po + ρgh    we can find     

     
    

  
 

       

    
  

             
           

This is not deep, but the pressure difference is 9.3 kPa. This is sufficient to rupture 

the diver’s lungs and force air from them into the depressurized blood, which then 

carries the air to the heart. 

Example: A U-tube contains two liquids in static equilibrium. Water of density ρw 

= 998 kg/m
3
 is in the right arm, and oil of unknown density ρoil is in the left. 

Measurement gives l = 135 mm and d=12.3 mm. What is the density of the oil? 

 

 

Solution: 

Because the water is in static equilibrium, pressure at interface position must be the 

same for right arm and left arm: 

            Pint  = po + ρwgl = po + ρoilg(l+d)   therefore 



 
    

  
 

 

   
                     

   

        
           

 

The work W done on the input piston by the applied force is equal to the work W 

done by the output piston in lifting the load placed on it. 

   W = Fodo = Fidi 

The advantage of a hydraulic lever is: With a hydraulic lever, a given force applied 

over a given distance can be transformed to a greater force applied over a smaller 

distance. 

Mechanical advantage of a simple machine is                   
  

  
 

 

Buoyant force:   

The buoyancy force is caused by the pressure exerted by the fluid in which an 

object is immersed.  



The buoyancy force always points upwards because the pressure of a fluid 

increases with depth. 

We can calculate the buoyancy force directly by computing the force exerted on 

each of the object’s surfaces, or indirectly by finding the weight of the displaced 

fluid. 

                  FB = Fbottom – Ftop  

If the buoyant force is greater than the object’s weight, the object rises to the 

surface and floats. If the buoyant force is less than the object’s weight, the object 

sinks. If the buoyant force equals the object’s weight, the object can remain 

suspended at its present depth. The buoyant force is always present, whether the 

object floats, sinks, or is suspended in a fluid. 

Apparent weight: If we place a stone on a scale that is calibrated to measure 

weight, the reading on the scale is the stone’s weight. However, if we do this 

underwater, the upward buoyant force on the stone from the water decreases the 

reading. That reading is then an apparent weight: 

          Apparent weight = Actual weight – magnitude of buoyant force 

  

 



 

 

ARCHIMEDES’ PRINCIPLE: 

When a body is fully or partially submerged in a fluid, a buoyant force     from the 

surrounding fluid acts on the body. The force is directed upward and has a 

magnitude equal to the weight mf.g of the fluid that has been displaced by the 

body.                                                  Fb = mf g       

where mf is the mass of the fluid that is displaced by the body. 

                                      

Fraction of submerged = 
    

   
 

 

 
 

   

H is the high of the object and h is the depth of submerged part. 

Example: An iceberg (ρ=917 kg/m^3) floats in seawater (ρ=1025 kg/m^3). What 

fraction of the iceberg is beneath the surface of the water? 

Floating: 

When a body floats in a fluid, the magnitude Fb of the buoyant force on the body is 

equal to the magnitude Fg of the gravitational force on the body. :   

                                                          Fb = Fg       

Example: A block of density ρ=800 kg/m
3
 floats face down in a fluid of density ρf 

= 1200 kg/m
3
. The block has height H=6.0 cm. 

a. By what depth h is the block submerged? 

b. If the block is held fully submerged and then released, what is the magnitude 

of its acceleration? 



    

Solution: 

The block is stationary, thus:      Fb = Fg       

where                                             

Solve for h:                    
 

  
 

 

 
                

 

  
  

   

    
           

With the block fully submerged, the volume of the displaced water is V = LWH 

(full block) 

This means that the value of buoyant force is larger, and the block no longer be 

stationary but will accelerate upward. Newton’s second law now: 

                                         

Solve for a:               
  

 
      

    

   
                  

 

Part 2: FLOW OF IDEAL FLUIDS: (fluid dynamics) 

An ideal fluid is incompressible and lacks viscosity, and its flow is steady and 

irrotational. 

A streamline is the path followed by an individual fluid particle. A tube of flow is a 

bundle of streamlines. The flow within any tube of flow obeys the  

Equation of Continuity:         Rv = Av = a constant 

In which Rv is the volume flow rate, A is the cross-sectional area of the tube of 

flow at any point, and v is the speed of the fluid at that point. 

Mass flow rate is         Rm = ρRv = ρAv = a constant 



Example: 

The figure shows how the stream of water emerging from a faucet “neck down” as 

it falls. This change in the horizontal cross-sectional area is characteristic of any 

laminar (non turbulent) falling stream because the gravitational force increases the 

speed of the stream.  The indicated cross-sectional areas are A1 = 1.2 cm
2
 and A = 

0.35 cm
2
. 

The two levels are separated by a vertical distance h=45 mm. What is the volume 

flow rate from the tap? 

    

Solution: 

Solve the system of two equations:                              
         

We have           
     

  
    

  
                    

            
               

The volume flow rate is                                    

 

BERNOULLI’S EQUATION: 

Applying the principle of conservation of mechanical energy to the flow of an ideal 

fluid leads to Bernoulli’s equation 



      
 

 
                       (1) 

Proof: 

 

The above figure represents a tube through which an ideal fluid is flowing at a 

steady rate. In a time interval t, suppose that a volume of fluid V, colored purple 

enters the tube at the left end and an identical volume colored green emerges at the 

right end. The emerging volume must be the same because the fluid is 

incompressible. 

Let y1, v1 and p1 be the elevation, speed, and pressure of the fluid entering at the 

left, and y2, v2, and p2 be the corresponding quantities for the fluid emerging at the 

right. The fluid lying between the two vertical planes separated by a distance L 

does not change its properties during this process. We need be concerned only with 

changes that take place at the input and output ends. 

Apply the energy conservation in the form of the work-kinetic energy theorem: 



     W = ΔK 

This tells us that the change in the kinetic energy of the system must equal the net 

work done on the system. The change in kinetic energy results from the change in 

speed between the ends of the tube and is      

     
 

 
    

  
 

 
    

  
 

 
      

    
         

Δm is the mass of the fluid that enters at the left end and leaves at the right end 

during a small time interval Δt. 

The work done on the system arises from two sources:  

                                                             

a. The work Wg done by the gravitational force (    ) on the fluid of mass Δm 

during the vertical lift of the mass from input level to the output level is: 

                              

     The work is negative because the upward displacement and the downward 

      gravitational force have opposite directions. 

b. The work done on the system at the input end to push the entering fluid into 

the tube and by the system at the output end to push forward the fluid that is 

located ahead of the emerging fluid. In general, the work done by a force of 

magnitude F, acting on a fluid sample contained in a tube of area ΔA to 

move the fluid through a distance Δx is: 

                              

The work done on the system is then p1 ΔV and the work done by the system is 

 –p2 ΔV. Their sum Wp is                                  

The work-kinetic energy theorem now becomes: 

                

Or                            
 

 
      

    
      



This leads to the Bernoulli’s equation (1). 

Example:  In the old West, a desperado fires a bullet into an open water tank, 

creating a hole a distance h below the water surface. What is the speed v of the 

water exiting the tank? 

   

Solution: 

Solve the system of two equations:               

         
 

 
   

         
 

 
          

Since  a << A, so   vo << v   so the middle term on the left can be negligible 

relative to the middle term to the right. Finally, we have:              

(similar to the free-fall) 

Example: 

The fresh water behind a reservoir dam has depth D = 15 m. A horizontal pipe 4.0 

cm in diameter passes through the dam at depth d=6.0 m. A plug secures the pipe 

opening. Find the magnitude of the frictional force between plug and pipe wall?  

If the plug is removed, what water volume exits the pipe in 3.0 hours? 



     

Solution: 

The friction force must at least equal to the force applied on the plus, therefore 

  f = AΔp = ρwgdA = (1000)(9.8)(6)Л(0.02)
2
 = 74 N. 

The speed of water flowing out of the hole is            

The volume of water flowing out of the pipe in t = 3.0 h is 

               V = Rvt = (Av)t = 1.5*10
2
 m

3
 

 


